NGI

A global tsunami model (GTM) for coordinated tsunami hazard and risk assessment

<u>F. Løvholt</u>¹, C. Harbitz¹, J. Griffin², G. Davies², S. Lorito³, R. Basili³, J. Selva³, M.A. Baptista⁴, R. Omira⁴, L. Matias⁴, A. Babeyko⁵, E. Geist⁶

Scope of this presentation

- Outline the first fully probabilistic and global hazard and risk analysis
 - Global Assessment Reports «GAR» comparative basis for risk due to natural hazards
 - Methods, limitations, and results
- Based on this work, we propose a Global Tsunami Model (GTM)
 - Focus on Probabilistic Tsunami Hazard and Risk (PTHA and PTRA)
 - Initial scope limited to PTHA
 - Involve a broader community working towards tsunami risk

2013

2015

Infrequent tsunamis dominate losses and challenge risk modellers

- The tsunamis in 2004 and 2011 account for a majority of the losses for the last 100 years
- Through history, the 50 most destructive tsunamis caused 97% of all lives lost
- Infrequent tsunamis expected to dominate risk return periods beyond 100 years
- The source (earthquake) statistics is poorly constrained at these return periods, and makes the probability of the large ones uncertain

Tsunami hazard and loss computation in GAR15

- **Tsunami hazard:** The annual probability of run-up exceeding a threshold value
- **Damage metric:** The tsunami flow depth
- **Objective I:** Estimate the tsunami hazard for all coastlines globally for relevant return periods.
- **Objective II:** Overlay with exposure dataset to obtain losses
- Losses may be derived by combining vulnerability curves as functions of the flow depth with the hazard

Suppasri et al. (2013), Nat. Hazards:

Observed building damage probabilities in Japan from the 2011 Tohoku earthquake and tsunami

Global PTRA in brief

- 1. Define points near coast
- 2. Select faults and divide into unit-sources
- 3. Simulate the wave propagation for the unit sources
- 4. Create events by summing and scaling
- 5. Define events probabilities
- 6. For each scenario at each point, associate tsunami heights with event probability
- 7. Apply amplification factors to give the run-up
- 8. Extrapolate the run-up values to onshore inundation maps for each scenario
- Overlay inundation areas with exposure datasets
- 10. Assign vulnerability to each exposed asset
- 11. Compute Loss Exceedance Curves (LEC) by convolving hazard and vulnerability
- 12. Quantify loss metrics from the LEC

Global hazard map of run-up

Tsunami risk for 500 year return period

Probable maximum loss curves

Large countries

Return period [years]

10³

Small Islands

Loss in MUSD

-0ss in %

Ballpark comparisons with recent major events indicate reasonable results

2011 Tohoku earthquake and tsunami

- Observed economic loss 210 BN US\$ (www.emdat.be)
- This loss corresponds to a return period of 250 years in GAR15
- Literature estimate of earthquake return period ~500 years ->
 Induced probable maximum loss in GAR 360 BN US\$

■ 2004 Indian Ocean tsunami

- Observed economic loss in Indonesia 4.4 BN US\$ (www.emdat.be)
- This loss corresponds to a return period of 1000 years in GAR15
- Evidence for past tsunamis detect in sediments in Thailand – several events last 5000 years

Present global analysis – main limitations

Rough representation of sources

- Only subduction zone earthquakes with $M_w > 7.8$
- Return periods from plate motion rates and fault locking
- Limited uncertainty representation, particularly epistemic

Inundation mapping

- Applied global digital elevation models may underestimate inundation
- Amplification factors of limited validity in complex geometries

Vulnerability and risk

- Only losses due to building damage explored
- Limited degree of sophistication and coverage of variability
- We do not yet know what the best risk indicator is

How will a Global Tsunami Model improve our understanding of the present risk situation?

- Involving the full tsunami hazard and risk community may:
 - Enable work on hazard and risk analysis on global, regional, and local scales
 - Include, within a probabilistic framework, also smaller earthquake and nonseismic sources
 - Increase model sophistication, performance and validation
 - Include a sound and feasible uncertainty treatment
 - Harmonize efforts and products
- Go beyond the scope of GAR
 - Develop standardized and open source tools for hazard and risk analysis
 - Develop guidelines and good practices
 - Integrate datasets from other providers
 - Become a term of reference for regional efforts
 - Validation of methods improve our understanding of the risk drivers

The GTM is not yet established!

Constraints

- Oriented towards tsunami hazard and risk
- Integrate efforts in a probabilistic framework
- First phase should focus on PTHA

Scoping meeting will be held at IUGG 29 June (room 1.2 10.30-13.00)

- Initial core group of researchers
- Background from PTHA or vulnerability and risk assessment
- Main emphasis provide the scientific scope

Aim

- Establish a (PTHA and PTRA) tsunami hazard and risk research community
- Community based model
- Open initiative
- Provide link and collaboration with other global models (e.g. GEM, GVM)

