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Exact relation between integral averages 

Exact relation 

Integration in space and time 
on control volume 

Integral averages 
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Evolution of integral averages: finite volume method 

Update formula 

Integral average at time n 

Control volume in  
computational domain 

Numerical flux 

Numerical source 
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Classical Riemann  solvers: 

Exact solvers (Godunov, 1959) 
Linearized solvers (Godunov, 1960) 
Roe (1981) 
Osher and Solomon (1982) 
HLL (Harten-Lax-van Leer) (1983) 
         Davis (1988) 
HLLE  Einfeldt (1988) 
HLLC (Toro et al. 1992, 1994) 
            Toro and Chakraborty 1994) 
            Batten et al. (1995,1997) 
FVS type solvers (Warming-Beam, 
        van Leer, Liou-Steffen,..) 
Rusanov (1961) 
GFORCE (Toro and Titarev, 2006) 
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Classification 

Complete Riemann solver: its structure contains all waves present in  
                                             the exact solution 
                                             Example: the exact solver 
                                                             Roe 
                                                             Osher-Solomom 
                                                             HLLC (for Euler) 

Incomplete Riemann solver: its structure contains less waves than  
                                               present in the exact solver 
                                               Example: HLL (for a 3x3 system) 
                                                               Rusanov 
                                                               GFORCE 
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Classification (cont..) 

Non-linear Riemann solver:  
                                         the exact solver 
                                         Osher-Solomom 
                                         HLL 
                                         HLLC 

Linearized Riemann solver: 
                                        Godunov’s (1960) 
                                        Roe 

The ideal solver: non-linear and complete 

Warning: an incomplete Riemann solver misrepresents discontinuities associated 
                with intermediate waves, resulting in excessive numerical dissipation, 
                specially for long time evolution problems. High-order methods cannot 
                correct this defect of the Riemann solver. 
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Roe’s Riemann solver 

This solver requires the so-called Roe averages. These have been found  
for anumber of well-kown systems. For a given complex hyperbolic system  
this may be an impossible task. 

This a complete Riemann solver, its structure contains all the characteristic 
fields of the exact solver. Therefore its numerical dissipation is minimal for  
intermediate (slow) characteristic fields. 

It is a linear solver and thus suffers from the following difficulties: 

 Requires an explicit entropy fix (available for some well-known systems) 

 Fails near low density flows (negative densities) 

 Further reading: chapter 11 of: Toro E F. Riemann solvers and numerical  
                methods for fluid dynamics. Springer, Third Edition, 2009. 
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Osher’s Riemann solver 
This solver is very complex and is only available for standard hyperbolic systems 
(Euler equations for ideal equation of state; shallow water equations). 

It is more expensive than the exact Riemann solver !! 

It requires knowledge of “intermediate” states to start the construction of the  
approximation (two-rarefaction solver is used). 

This is a non-linear solver (no entropy fix needed). 

This is a complete Riemann solver. 

Performs well for slowly-moving shocks  
(T W Roberts. The behabivour of flux difference  splitting schemes  near slowly-moving  
shock waves.  J. Comput. Physics, 141-160, 1990). 

Performs well for low-density flows. 

 Further reading: chapter 12 of: Toro E F. Riemann solvers and numerical  
                methods for fluid dynamics. Springer, Third Edition, 2009. 
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Recent solvers for the 
classical  

Riemann problem 
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The MUSTA approach 

The MUSTA approach (Toro, 2003) is an attempt 
to regain upwind information but without solving  

the Riemann problem in the classical sense. 

We look for upwind schemes that are simple and  
directly applicable to very complicated problems 

A degree of success has been achieved but the work is  
not yet complete, to our satisfaction 
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 Schemes associated to the FORCE flux: 
a motivating discussion 

Special cases: 

Convergence of FORCER scheme in. 
Cheng and Toro. J Hyp. Diff. 

Eq. 2004. 
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Purpose of MUSTA:  

To recover the lost corner by opening the Riemann fan,  
but without solving the Riemann problem in the classical  

sense. 
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MUSTA: multi-stage predictor-corrector 
approach 
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Difficulty: Monotonicity!! 

This is MUSTA with one stage and 2 local cells using 
FORCE as predictor and corrector (Toro 2003) 

Recent studies (Titarev and Toro, 2006) show that 
as the number of stages is increased, while keeping the 

number of cells constant, worsens the situation. 
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Two classes of MUSTA schemes: 

Use FORCE (or GFORCE)  as Predictor (many stages on a 
sufficiently large mesh) and Corrector (final stage) stages 

Simple and general but (may be) costly 
Research  still in progress 

More details in: 
Toro EF. MUSTA: a multistage numerical flux. Applied Num. Anal. 2006. 

Toro E F and Titarev VA. MUSTA schemes for hyperbolic 
conservation laws. J. Comput. Phys. 2006. 

Titarev VA and Toro EF. Int. J. Numer. Meth. Fluids. 2005. 

Class 1: 



16 

Two classes of MUSTA schemes (cont...) 

  Perform a predictor stage using FORCE or GFORCE 

  Perform a linearization on predicted states and solve simple  
      linearized Riemann problem 

Class 2: The EVILIN variant 

Further details on EVILIN variant in: 
Toro E F. Riemann solvers with evolved initial conditions.  
Int. J. Numer. Meth. In Fluids,  Vol. 52, pp 433-453, 2006 

    The resulting Riemann solver is complete  
     It is simple 
     But one needs the eigenstructure of the system 
     It is entropy satisfying 
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 The MUSTA-1 scheme 

Predictor step 

Corrector step 
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 The EVILIN variant for the 3D Euler equations 
Corrector step: solve linear Riemann problem 
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Some test problems for EVILIN applied to 
the Euler equations. 
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The 123 test (low density) 
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Sonic flow test 
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Isolated stationary contact 
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The Woodward and Colella blast wave test 
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The Woodward and Colella blast wave test 
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Mach reflection (2D) 
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Mach reflection (2D) 
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Summary and concluding remarks 

 A Riemann solver gives a numerical flux (this can be used in finite volume 
    and discontinuous Galerkin finite element methods). 

 A Riemann solver (numerical flux) may be centred (no explicit use of wave propagation  
    information used) or upwind (explicit use of wave propagation information used). 

 A Riemann solver may be linear or non-linear. 

 A Riemann solver may be complete (all characteristic fields) or incomplete (reduced 
    wave model). 

 Incomplete Riemann solvers lead to excessive dissipation of slowly moving 
    intermediate waves. 

 The ideal solve is non-linear and complete. 

  Advances still possible. 


