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Introduction

Introduction

Finally let us consider more generally the group of problems which gave

rise to the development of the method to which this article is

devoted.. . . The problem of the behavior of such a system is formulated

by a set of integro-differential equations. Such equations are known in

the kinetic theory of gases as the Boltzmann equation. In the theory of

probability one has a somewhat similar situation described by the

Fokker-Planck equation.

(N.Metropilis, S.Ulam, ”The Monte Carlo method”, J. Am. Stat. Ass., 1949.)
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Introduction Levels of representation

Levels of representation

Interacting particle systems are ubiquitous in nature: gases, fluids, plasmas,
solids (metals, semiconductors or insulators), vehicles on a road, economic
agents can be considered as interacting particle systems.

Particle systems can be described at the microscopic level by particle
dynamics (Newton’s equations) describing the individual motions of the
particles. However, particle dynamic is impossible to use in most practical
cases, due to the extraordinary large number of equations that must be
solved simultaneously.

At the macroscopic level fluid models (such as the Euler or Navier-Stokes

equations) describe averaged quantities, local density, momentum, energy...
However, fluid models involve constants (viscosity, heat conductivity,
diffusion) which depend on the microscopic properties of the elementary
particles interactions.
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Introduction Levels of representation

There is a need to bridge the gap between particle dynamics and fluid
models. This question of how to pass from microscopic properties of matters
to macroscopic properties of systems is one of the most fundamental ones in
physics. It is also one of the most difficult.

The problem is slightly simplified by introducing an intermediate step
between particle systems and fluid models: the so-called kinetic level. These
models, characterized by Boltzmann equations, deal with a quantity, the
distribution function, which is the density of particles in phase-space (say
position and velocity).

The essential idea of Monte Carlo or particle simulations for the Boltzmann
equation is to return to the particle description with a number of particles
small enough to make the situation computationally treatable but
”sufficiently close” to the physical situation. As we will see this will involve
evaluations of high dimensional integrals for which Monte Carlo methods
arise quite naturally.
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Introduction Levels of representation

Microscopic, kinetic and computational levels

Microscopic
     level
   N≈ 1023

Kinetic level
 Boltzmann
  equation

Monte Carlo
  simulation
    N≈ 105

Direct
method

Consistent
method

N→∞, δ→ 0, Nδ2=κ
Boltzmann−Grad limit

Applications
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Introduction The Boltzmann equation

The kinetic model
In the Boltzmann description of rarefied gas dynamics, the density f = f(x, v, t)
of particles follows the equation

∂f

∂t
+ v · ∇xf =

1

ε
Q(f, f), x ∈ Ω ⊂ IR3, v ∈ IR3,

The parameter ε > 0 is called Knudsen number and it is proportional to the mean
free path between collisions. The bilinear collision operator Q(f, f) is given by

Q(f, f)(v) =

∫

IR3

∫

S2

B(f(v′)f(v′

∗
) − f(v)f(v∗))dv∗dσ,

where σ is a vector of the unitary sphere S2 ⊂ IR3 and the dependence of f on x
and t has been omitted.The kernel B characterizes the binary interactions. The
Variable Hard Spheres1 (VHS) model used for RGD simulations is

B(|q|, |q · σ|) = C|q|α, 0 ≤ α ≤ 1,

where C is a positive constant. The case α = 0 corresponds to a Maxwellian gas,
while α = 1 is called a Hard Sphere Gas.

1G.Bird, 1976
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Introduction The Boltzmann equation

The collision sphere
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The collisional velocities (v′, v′

∗
) are associated to the velocities (v, v∗) and to the

parameter σ by the relations

v′ =
1

2
(v + v∗ + |q|σ), v′

∗
=

1

2
(v + v∗ + |q|σ),

where q = v − v∗ is the relative velocity.
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Introduction The Boltzmann equation

Main properties
The collision operator preserves mass, momentum and energy

∫

R3

Q(f, f)φ(v) dv = 0, φ(v) = 1, vx, vy, vz, |v|2,

and in addition is such that the H-Theorem holds
∫

IR3

Q(f, f) log(f)dv ≤ 0.

This condition implies that each function f in equilibrium (i.e. Q(f, f) = 0) has
locally the form of a Maxwellian distribution

M(ρ, u, T )(v) =
ρ

(2πT )3/2
exp

(

−|u − v|2
2T

)

,

where ρ, u, T are the density, the mean velocity and the gas temperature

ρ =

∫

IR3

fdv, ρu =

∫

IR3

fvdv, T =
1

3ρ

∫

IR3

(v − u)2fdv.
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Introduction Hydrodynamic limits

Fluid limit
The most natural method to derive fluid equations is the moment method. Let us
multiply the Boltzmann equation by its collision invariants and integrate

∂

∂t

∫

R3

fφ(v) dv + ∇x

(∫

R3

vfφ(v) dv

)

= 0, φ(v) = 1, v1, v2, v3, |v|2.

These equations descrive the balance of mass, momentum and energy. The
system is not closed since it involves higher order moments of f .
As ε → 0 we have formally Q(f, f) → 0 and thus f → M . Higher order moments
of f can be computed as function of ρ, u, and T and we obtain the compressible
Euler equations

∂ρ

∂t
+ ∇x · (ρu) = 0

∂ρu

∂t
+ ∇x · (ρu ⊗ u + p) = 0

∂E

∂t
+ ∇x · (Eu + pu) = 0, p = ρT =

2

3
E − 1

3
ρu2.
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Introduction Splitting approach

Splitting approach
A common approach to solve a kinetic equation is operator splitting. The solution
in one time step ∆t may be obtained by the sequence of two steps.
First integrate the space homogeneous equation for all x ∈ Ω,

∂f̃

∂t
=

1

ε
Q(f̃ , f̃),

f̃(x, v, 0) = f0(x, v),

for a time step ∆t (collision step) to obtain f̃ = C∆t(f0).
Then solve the transport equation using the output of the previous step as initial
condition,

∂f

∂t
+ v · ∇xf = 0,

f(x, v, 0) = f̃(x, v,∆t).

for a time step ∆t (transport step) to get f = T∆t(f̃) = T∆t(C∆t(f0)).
After this splitting the major numerical difficulties are in the collision step. Note
that the transport step corresponds to simple free flow of particles.

Lorenzo Pareschi (Univ. Ferrara) MC methods for integro-differential equations #2 Malaga, February 8-12, 2010 16 / 63



Introduction Splitting approach

Splitting approach
The splitting scheme described above is first order accurate in time. The
accuracy in time may be improved by a more sophisticated splitting. For
example Strang splitting2 is second order accurate (provided both steps are at
least second order). It can be written as

f = C∆t/2(T∆t(C∆t/2(f0))),

or equivalently as
f = T∆t/2(C∆t(T∆t/2(f0))).

Note that, if the initial data is in local equilibrium and both steps are solved
exactly, then simple splitting and Strang splitting does not differ. So simple
splitting becomes second order accurate.

Both splitting methods for vanishingly small values of ε becomes a first order
kinetic scheme for the underlying fluid dynamic limit. The collision step
becomes a projection towards the local Maxwellian C∆t(f0) = M(f0) which
is then transported by the transport step f = T∆t(M(f0)). Thus Strang
splitting reduces its accuracy to first order in time in this regime.

2G.Strang, 1968
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Direct Simulation Monte Carlo methods DSMC methods

DSMC basics
Example: Flow past a sphere

Initialize system with particles (xi, vi), i = 1, . . . , N (sampling).
Loop over time steps of size ∆t.
Create particles at open boundaries.
Move all the particles xi = xi + vi∆t (transport step).
Process any interactions of particle and boundaries (Maxwell’s b.c.).
Sort particles into cells.
Select and execute random collisions (collision step).
Compute average statistical values.
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Direct Simulation Monte Carlo methods DSMC methods

DSMC for the collision step

In this paragraph we will describe the classical DSMC methods due to Bird and
Nanbu in the case of spatially homogeneous Boltzmann equations3.
We assume that the kinetic equations can be written in the form

∂f

∂t
=

1

ε
[P (f, f) − µf ],

where µ > 0 is a constant and P (f, f) is a non negative bilinear operator s.t.

1

µ

∫

R

P (f, f)(v)φ(v) dv =

∫

R

f(v)φ(v) dv, φ(v) = 1, v, v2.

For the Boltzmann equation in the Maxwellian case

P (f, f) = Q+(f, f)(v) =

∫

R3

∫

S2

f(v′)f(v′

∗
) dω dv∗,

and µ = 4πρ. The case of general VHS kernels will be discussed later.

3G.Bird ’63, K.Nanbu ’83
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Direct Simulation Monte Carlo methods Nanbu’s method

Nanbu’s method (DSMC no time counter)

We assume that f is a probability density, i.e. ρ =
∫ +∞

−∞
f(v, t) dv = 1.

Consider a time interval [0, tmax], and discretize it in ntot intervals of size ∆t.
Let fn(v) be an approximation of f(v, n∆t). The forward Euler scheme writes

fn+1 =

(

1 − µ∆t

ǫ

)

fn +
µ∆t

ǫ

P (fn, fn)

µ
.

Clearly if fn is a probability density both P (fn, fn)/µ and fn+1 are probability
densities. Thus the equation has the following probabilistic interpretation.

Physical level: a particle with velocity vi will not collide with probability
(1 − µ∆t/ǫ), and it will collide with probability µ∆t/ǫ, according to the
collision law described by P (fn, fn)(v).

Monte Carlo level: to sample vi from fn+1 with probability (1 − µ∆t/ǫ) we
sample from fn, and with probability µ∆t/ǫ we sample from P (fn, fn)(v)/µ.

Note that ∆t ≤ ǫ/µ to have the probabilistic interpretation.
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Direct Simulation Monte Carlo methods Nanbu’s method

Maxwellian case
First we consider the case where the collision kernel does not depend on the
relative velocity.

Algorithm[Nanbu for Maxwell molecules]:

1. compute the initial velocity of the particles, {v0
i , i = 1, . . . , N},

by sampling them from the initial density f0(v)
2. for n = 1 to ntot

for i = 1 to N
with probability 1 − µ∆t/ǫ

◦ set vn+1

i = vn
i

with probability µ∆t/ǫ
◦ select a random particle j
◦ compute v′

i by performing the collision

between particle i and particle j
◦ assign vn+1

i = v′

i

end for

end for

Nanbu’s algorithm is not conservative, i.e. momentum and energy are conserved
only in the mean, but not at each collision. A conservative algorithm is obtained
selecting independent particle pairs, instead of single particles.
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Direct Simulation Monte Carlo methods Nanbu-Babovsky method

Nanbu-Babovsky for the Maxwellian case
The expected number of collision pairs in a time step ∆t is Nµ∆t/(2ǫ).

Algorithm[Nanbu-Babovsky for Maxwell molecules]:

1. compute the initial velocity of the particles, {v0
i , i = 1, . . . , N},

by sampling them from the initial density f0(v)
2. for n = 1 to ntot

given {vn
i , i = 1, . . . , N}

◦ set Nc = Iround(µN∆t/(2ǫ))
◦ select Nc pairs (i, j) uniformly among all possible pairs,

and for those

- perform the collision between i and j, and compute

v′

i and v′

j according to the collision law

- set vn+1

i = v′

i, vn+1

j = v′

j

◦ set vn+1

i = vn
i for all the particles that have not been selected

end for

Here by Iround(x) we denote

Iround(x) =

{

⌊x⌋ + 1 with probability x − ⌊x⌋
⌊x⌋ with probability ⌊x⌋ + 1 − x

where ⌊x⌋ denotes the integer part of x.
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Direct Simulation Monte Carlo methods Nanbu-Babovsky method

Collisional velocities

The collisional velocities are

v′

i =
vi + vj

2
+

|vi − vj |
2

ω, v′

j =
vi + vj

2
− |vi − vj |

2
ω,

where ω is chosen uniformly in the unit sphere.
More precisely we have:
Two-dimension:

ω =

(

cos θ
sin θ

)

, θ = 2πξ,

Three-dimension:

ω =





cos φ sin θ
sin φ sin θ

cos θ



 , θ = arccos(2ξ1 − 1), φ = 2πξ2,

where ξ1, ξ2 are uniformly distributed random variables in [0, 1].
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Direct Simulation Monte Carlo methods Nanbu-Babovsky method

Variable Hard Sphere case
The extend the algorithm to non constant scattering cross section we shall assume
that the collision kernel satisfies some cut-off hypothesis.
We will denote by QΣ(f, f) the collision operator with kernel

BΣ(|v − v∗|) = min {B(|v − v∗|),Σ} , Σ > 0.

and, for a fixed Σ, consider the homogeneous problem

∂f

∂t
=

1

ε
QΣ(f, f).

The operator QΣ(f, f) can be written in the form P (f, f) − µf taking

P (f, f) = Q+
Σ(f, f) + f(v)

∫

R3

∫

S2

[Σ − BΣ(|v − v∗|)]f(v∗) dω dv∗,

with µ = 4πΣρ and

Q+
Σ(f, f) =

∫

R3

∫

S2

BΣ(|v − v∗|)f(v′)f(v′

∗
) dω dv∗.

In this case, a simple scheme is obtained by using the acceptance-rejection
technique to sample the collisional velocity according to P (f, f)/µ.
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Direct Simulation Monte Carlo methods Nanbu-Babovsky method

Nanbu-Babovsky for VHS

The conservative DSMC algorithm for VHS collision kernels can be written as

Algorithm[Nanbu-Babovsky for VHS molecules]:

1. compute the initial velocity of the particles, {v0
i , i = 1, . . . , N},

by sampling them from the initial density f0(v)
2. for n = 1 to ntot

given {vn
i , i = 1, . . . , N}

◦ compute an upper bound Σ of the cross section

◦ set Nc = Iround(NρΣ∆t/(2ǫ))
◦ select Nc dummy collision pairs (i, j) uniformly

among all possible pairs, and for those

- compute the relative cross section Bij = B(|vi − vj |)
- if Σ Rand < Bij

perform the collision between i and j, and compute

v′

i and v′

j according to the collisional law

set vn+1

i = v′

i, vn+1

j = v′

j

◦ set vn+1

i = vn
i for all the particles that have not collided

end for
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Direct Simulation Monte Carlo methods Nanbu-Babovsky method

Evaluation of Σ

The upper bound Σ should be chosen as small as possible, to avoid inefficient
rejection, and it should be computed fast. It is be too expensive to compute Σ as

Σ = Bmax ≡ max
ij

B(|vi − vj |),

since this computation would require an O(N2) operations.
An upper bound of Bmax is obtained by taking Σ = B(2∆v), where

∆v = max
i

|vi − v̄|, v̄ :=
1

N

∑

i

vi.

Remarks:

The probabilistic interpretation breaks down if ∆t/ǫ is too large. This implies
that the time step becomes extremely small when approaching the fluid
dynamic limit.

The cost of the method is proportional to the number of dummy collision
pairs, that is µN∆t/2. Thus for a fixed final time T the total cost is
independent of the choice of ∆t = T/n. However this is true only if we do
not had to compute Σ (like in the Maxwellian case).
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Direct Simulation Monte Carlo methods Bird’s method

Bird’s method (DSMC time counter)

The method is currently the most popular method for the numerical solution of
the Boltzmann equation. It has been derived accordingly to physical considerations
(as a simplified molecular dynamics) for the simulation of particle collisions.
Let us consider first the Maxwellian case. The number of collisions in a short time
step ∆t is given by

Nc =
Nµ∆t

2ε
, µ = 4πρ.

This means that the average time between collisions ∆tc is given by

∆tc =
∆t

Nc
=

2ε

µN
.

The method is then based on selecting randomly a particle pair, compute the
collision result and update the local time counter by ∆tc.
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Direct Simulation Monte Carlo methods Bird’s method

Bird for Maxwellian case
It is possible to set a time counter, tc, and to perform the calculation as follows

Algorithm[Bird for Maxwell molecules]:

1. compute the initial velocity of the particles, {v0
i , i = 1, . . . , N},

by sampling them from the initial density f0(v)
2. set time counter tc = 0
3. set ∆tc = 2ε/(µN)
4. for n = 1 to ntot

◦ repeat

- select a random pair (i, j) uniformly within all possible pairs

- perform the collision and produce v′

i, v′

j

- set ṽi = v′

i, ṽj = v′

j

- update the time counter tc = tc − ∆tc

until tc ≥ (n + 1)∆t
◦ set vn+1

i = ṽi, i = 1, . . . , N
end for

The algorithm is similar to the Nanbu-Babovsky (NB) scheme for Maxwellian
molecules. The main difference is that in NB scheme the particles can collide only
once per time step, while in Bird’s scheme multiple collisions are allowed.
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Direct Simulation Monte Carlo methods Bird’s method

Variable Hard Sphere case
For a more general kernel, Bird’s scheme is modified to take into account that the
average number of collisions in a given time interval is not constant, and that the
collision probability on all pairs is not uniform. This can be done as follows.
The expected number of collisions in a time step ∆t is given by

Nc =
NρB∆t

2ε
,

where B denotes the average collision frequency.
Then the mean collision time can be computed as

∆tc =
∆t

Nc
=

2ε

NρB
.

The Nc collisions have to be performed with probability proportional to
Bij = B(|vi − vj |). In order to do this one can use the same acceptance-rejection
technique as in Nanbu-Babovsky scheme. The drawback of this procedure is that
computing B is too expensive. To avoid this one computes a local time counter as
follows. First select a collision pair (i, j) using rejection. Then compute

∆tij =
2ε

NρBij
.
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Direct Simulation Monte Carlo methods Bird’s method

Bird for VHS
Bird’s algorithm for general VHS molecules can therefore be summarized as:

Algorithm[Bird for VHS molecules]:

1. compute the initial velocity of the particles, {v0
i , i = 1, . . . , N},

by sampling them from the initial density f0(v)
2. set time counter tc = 0
3. for n = 1 to ntot

◦ compute an upper bound Σ of the cross section

◦ repeat

- select a random pair (i, j) uniformly

- compute the relative cross section Bij = B(|vi − vj |)
- if Σ ξ < Bij

• perform the collision between i and j, and compute

v′

i and v′

j according to the collisional law

• set ṽi = v′

i, ṽj = v′

j

• set ∆tij = 2ε/(NρBij)
• update the time counter tc = tc + ∆tij

until tc ≥ (n + 1)∆t
◦ set vn+1

i = ṽi, i = 1, . . . , N
end for
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Direct Simulation Monte Carlo methods Final remarks

Final remarks
The presence of multiple collisions per time step in Bird’s method has a
profound influence on the time accuracy. While Nanbu scheme converges in
probability to the time discrete Boltzmann equation, Bird’s method converges
to the space homogeneous Boltzmann equation4.

Numerical tests confirm that in space non homogeneous situations Bird’s
method with simple splitting can achieve second order accuracy in time
whereas Nanbu’s is always first order5.

In the original nonconservative form one can show that Nanbu’s method gives
the wrong expectation for the temperature6.

Exact conservation of moments forces the velocity domain to remain
bounded during relaxation |vi| ≤

√
2EN . As a consequence steady state

particles are never ”true” Maxwellian samples.

Similarly to Nanbu’s method also Bird’s method becomes very expensive and
practically unusable near the fluid regime. Infact, the collision time between
the particles ∆tij becomes very small, and a huge number of collisions is
needed in order to reach a fixed final time tmax.

4R.Illner, H.Babovski ’89, W.Wagner ’92
5A.Garcia, W.Wagner ’00
6C.Greengard, L.G.Reyna ’91
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Asymptotic Preserving Monte Carlo methods

Main goal

The goal is to construct simple and efficient Monte Carlo methods for the solution
of RGD problems in regions with a large variation in the mean free path.
As a consequence the methods should have the following features

for large Knudsen numbers, the methods behave as classical DSMC methods;

for intermediate Knudsen numbers the methods are capable to speed up the
computation time without degradation of accuracy;

in the limit of the very small Knudsen number, the collision step replaces the
distribution function by a local Maxwellian with the same moments. The
methods will behave as a stochastic kinetic scheme for the underlying Euler
equations of gas dynamics (asymptotic preserving (AP) property);

mass, momentum, and energy are preserved.
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Asymptotic Preserving Monte Carlo methods Exponential methods

Exponential methods

Let us rewrite the homogeneous equation in the form7

∂tf =
1

ε
(P (f, f) − µf) =

µ

ε

(

P (f, f)

µ
− M

)

+
µ

ε
(M − f).

Note that the above system is is composed by a linear part µ(M − f)/ε which
characterizes the asymptotic behavior of f and a nonlinear part
(P (f, f)/µ − M)/ε which describes the deviations of P (f, f)/µ from M , or
equivalently the deviations of the Boltzmann operator from the BGK model.
The system has the general structure

y′ = G(y) + λ(E − y), y(t0) = y0,

where λ > 0, and E is a local equilibrium value.

7F.Filbet, S.Jin ’09, G.Dimarco, L.Pareschi ’09
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Asymptotic Preserving Monte Carlo methods Exponential methods

Exponential Runge-Kutta

We can apply an explicit exponential Runge-Kutta method to the above system in
the form 8

Y (i) = eciλ∆tyn + (1 − eciλ∆t)En + ∆t

i−1
∑

j=1

Aij(λ∆t)G(Y (j)), i = 1, . . . , ν

yn+1 = eλ∆tyn + (1 − eλ∆t)En + ∆t

ν
∑

i=1

Wi(λ∆t)G(Y (i)),

where ci ≥ 0, and the coefficients Aij and the weights Wi are such that

Aij(0) = aij , Wi(0) = wi, i, j = 1, . . . , ν

with aij and wi given by a standard explicit Runge-Kutta method called the
underlying method. So when G = 0 the method is exact and when λ = 0 the
method reduces to an explicit one-step method for ODEs.

8M.Hochbruck, C.Lubich, H.Selhofer ’98. S.Maset, M.Zennaro ’09
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IF and ETD methods

Various schemes come from the different choices of the coefficients and the
weights. The two most popular approaches are the integrating factor (IF) and the
exponential time differencing (ETD) methods.
For the so-called Integrating Factor methods we have9

Aij(λ∆t) = aije
(ci−cj)λ∆t, i, j = 1, . . . , ν, j > i

Wi(λ∆t) = wie
(1−ci)λ∆t, i = 1, . . . , ν.

For the Exponential Time Differencing the weights Wi(λ∆t) are linear
combinations of the functions φl(λ∆t), l = 1, . . . , ν and the coefficients Aij(λ∆t)
are linear combinations of the functions φl(ciλ∆t), l = 1, . . . , ν where the
functions φl are defined recursively from10

φl(z) =
φl−1(z) − 1

(l−1)!

z
, φ0(z) = ez.

9J. Lawson, ’67
10A. Friedli, ’78
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Application to the Boltzmann equation

When applied to the Boltzmann equation the first order IF scheme takes the form

fn+1 = e−
µ∆t

ε fn +
µ∆t

ε
e−

µ∆t

ε
P (fn, fn)

µ
+

(

1 − e−
µ∆t

ε − µ∆t

ε
e−

µ∆t

ε

)

Mn,

whereas the ETD scheme becomes

fn+1 = e−
µ∆t

ε fn + (1 − e−
µ∆t

ε )
P (fn, fn)

µ
.

Note that both schemes are of the general form

fn+1 = A1

(

µ∆t

ε

)

fn + A2

(

µ∆t

ε

)

P (fn, fn)

µ
+ A3

(

µ∆t

ε

)

Mn,

with A1, A2, A3 ∈ [0, 1] and A1 + A2 + A3 = 1 independently of µ∆t/ǫ. The
above property assures that they are unconditionally stable, preserve nonnegativity
and the main physical conservations properties.

Lorenzo Pareschi (Univ. Ferrara) MC methods for integro-differential equations #2 Malaga, February 8-12, 2010 42 / 63



Asymptotic Preserving Monte Carlo methods Exponential methods

It can be shown that the general class of methods can be written in the following
form

fn+1(v) =

m
∑

k=0

Akfn
k (v) + Am+1M(v),

where the functions fk are given by the recurrence formula

fk+1(v) =
1

k + 1

k
∑

h=0

1

µ
P (fh, fk−h), k = 0, 1, . . . .

We require the weights Ak = Ak(µ∆t/ε) to be nonnegative function (eventually
under a time step restriction) that satisfy the following properties

conservation :
m+1
∑

k=0

Ak(µ∆t/ε) = 1 τ ∈ [0, 1],

asymptotic preserving :

lim
µ∆t/ε→∞

Am+1(µ∆t/ε) = 1.
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Remarks
Note that the AP property is not satisfied by the standard first order ETD
whereas it is satisfied by the first order IF scheme. This remains true also for
higher order methods. A modification of ETD methods that satisfy AP
property can be derived using the so called time relaxed methods11

corresponding to

Ak = e−µ∆t/ε(1 − e−µ∆t/ε)k, Am+1 = (1 − e−µ∆t/ε)m+1.

An important property of the coefficients fk(v) appearing in the expansion is
that they are nonnegative and that

∫

IR3

fk(v)φ(v) dv =

∫

IR3

f0(v)φ(v) dv, φ(v) = 1, v, |v|2, ∀ k.

The schemes have a nice probabilistic interpretation. In fact, if fn is a
probability density function so are fn

k for all k and then the schemes describe
the next time level fn+1 as a convex combination of probability density
functions which makes them suitable for Monte Carlo simulations.

11E.Gabetta, L.P., G.Toscani, ’97. L.P., G.Russo, ’01
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Asymptotic Preserving Monte Carlo (APMC) Methods

First order scheme (APMC1):
Form m = 1 the generalized AP schemes give

fn+1 = A0f
n + A1f1 + A2M

The probabilistic interpretation of the above equation is the following.
A particle extracted from fn

does not collide with probability A0, (i.e. it is sampled from fn)

collides with another particle extracted from fn with probability A1 (i.e. it is
sampled from the function f1)

is replaced by a particle sampled from a Maxwellian with probability A2.

Remarks: In this formulation the probabilistic interpretation holds uniformly in
µ∆t, at variance with NB, which requires µ∆t < 1. Furthermore, as µ∆t → ∞,
the distribution at time n + 1 is sampled from a Maxwellian.
In a space non homogeneous case, this would be equivalent to a particle method
for Euler equations.
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Second order APMC scheme

Form m = 2 the generalized AP schemes give

fn+1 = A0f
n + A1f1 + A2f2 + A3M,

with f1 = P (fn, fn)/µ, f2 = P (fn, f1)/µ.
The probabilistic interpretation of the scheme is the following. Given N particles
distributed according to fn:

NA0 particles do not collide,

NA1 are sampled from f1, as in the first order scheme,

NA2 are sampled from f2, i.e. NA2/2 particles sampled from fn will
undergo dummy collisions with NA2/2 particles sampled from f1,

NA3 particles are sampled from a Maxwellian.

Remarks: Previous MC schemes can be made exactly conservative. This goal is
achieved by using a suitable algorithm for sampling a set of particles with
prescribed momentum and energy from a Maxwellian.
Higher order APMC methods can be constructed similarly.
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Numerical results
Space homogeneous case

Comparison between: NB and APMC1 with the IF coefficients.
Test problem: Asymmetric bimodal distribution in 2D.
Number of particles: N = 5 × 105

1D Shock wave profiles

Comparison between: NB, APMC1, APMC2, APMC3 with the time relaxed
coefficients.
Initial data f(x, v, t) = M(ρ, u, T ), with

ρ = 1.0, T = 1.0, Ma = 3.0, x > 0,

where Ma is the Mach number. The mean velocity is

ux = −Ma
√

(γT ), uy = 0,

with γ = 5/3. The values for ρ, u and T for x < 0 are given by the
Rankine-Hugoniot conditions.
Test problem : Hard sphere gas with 50− 100 space cells and 500 particles in
each cell on x > 0.
For stationary shocks the accuracy of the methods can be increased by
computing averages on the solution for t ≫.
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Homogeneous case

Maxwellian case: L2 norm of the error vs time for the 4-th order moment.
DSMC (left) and first order APMC (right) with different time steps.
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Shock profile rarefied regime

1D shock profile: DSMC(+) and first order APMC (×) (top), second order (∗)
and third order (◦) APMC (bottom) for ǫ = 1.0 and ∆t = 0.025. From left to
right: ρ, u, T . The line is the reference solution.
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Shock profile intermediate regime
1D shock profile: DSMC(+) and first order APMC (×) (top), second order (∗)
and third order (◦) APMC (bottom) for ǫ = 0.1 and ∆t = 0.0025 for DSMC,
∆t = 0.025 for APMC. From left to right: ρ, u, T . The line is the reference
solution.
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Shock profile fluid regime
1D shock profile: First order APMC (×) for ǫ = 10−6 and ∆t = 0.025. From
left to right: ρ, u, T .
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2D Flow past an ellipse

Euler or Navier-Stokes region

Boltzmann region

ε << 0.01

ε >  0.01

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

NB, APMC1 and APMC2 schemes

Ma = 20, ρinf = 0.01, Tinf = 200, Tobj = 1000, ǫ = 0.1, 0.01, 10−6

Test problem : Hard spheres with 75 × 60 space cells and 100 particles in
each cell at ’infinity’. Full accomodation boundary condition.
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2D flow: ε = 0.1

NB, APMC1 and APMC2 solution for the mass ρ.
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2D flow: ε = 0.1

Transversal and longitudinal sections for the mass ρ at y = 6 and x = 5
respectively for ǫ = 0.1 and M = 20; DSMC-NB (◦), APMC I (+), APMC II (×).
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2D flow: ε = 0.01

NB, APMC1 and APMC2 solution for the mass ρ.
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2D flow: ε = 0.01

Transversal and longitudinal sections for the mass ρ at y = 6 and x = 5
respectively for ǫ = 0.1 and M = 20; DSMC-NB (◦), APMC I (+), APMC II (×).
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2D flow: ε = 10
−6

NB, APMC1 and APMC2 solution for the mass ρ.
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2D flow: ε = 10
−6

Transversal and longitudinal sections for the mass ρ at y = 6 and x = 5
respectively for ǫ = 0.1 and M = 20; DSMC-NB (◦), APMC I (+), APMC II (×).
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2D flow: Number of ”Collisions”

From left to right ǫ = 0.1, 0.01, 0.001; NB (◦), APMC1 (+), APMC2 (×).
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Further developments

There are many different possible improvements of DSMC methods.
Typically these methods tackle particular situations like the case of low Mach
number flows12 and simulation of rare events (Stochastic Weighted Particle
methods). 13

Hybrid Monte Carlo methods: Couplings of microscopic stochastic models to
macroscopic deterministic models is highly desirable in many applications.
Similar arguments apply also to numerical methods14. Main advantages are
reduced variance and improved efficiency close to fluid regimes.

Hydro-guided Monte Carlo: The basic idea consists in obtaining reduced
variance Monte Carlo methods forcing particles to match prescribed sets of
moments given by the solution of deterministic macroscopic fluid equations15.
A similar idea has been used in Information Preserving Monte Carlo. 16

12N. Hadjiconstantinou, T. Homolle, ’07
13S.Rjasanow, W.Wagner, ’05
14W.E, B.Engquist ’03, L.P. ’05, L.P., G.Dimarco ’06, ’08
15P.Degond, G.Dimarco, L.P., ’09
16Q.Sun, D.Boyd, ’02.
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