- Castro, M. J., Fernández-Nieto, E. D., González-Vida, J. M., Parés, C. (2011a). Numerical Treatment of the Loss of Hyperbolicity of the Two-Layer Shallow-Water System. Journal of Scientific Computing, 48(1):16-40.
- Castro, M.J., Ortega, S., de la Asunción, M., Mantas, J.M., Gallardo, J.M. (2011b). GPU computing for shallow water flows simulation based on finite volume schemes. C.R. Mecanique , 339(2-3):165-184.
- Cordier, S., Le, M. and Morales de Luna, T. (2011). Bedload transport in shallow water models: Why splitting (may) fail, how hyperbolicity (can) help. Advances in Water Resources, 8(34):980-989.
- de la Asunción, M., Castro, M.J., González-Vida, J.M., Macías, J., Ortega-Acosta, and S., Sánchez-Linares, C. (2013). East Coast Non-Seismic Tsunamis: A first landslide approach. The memorandum can be downloaded here.
- de la Asunción, M., Mantas and J.M., Castro, M.J. (2012). Evaluating the impact of cell renumbering of unstructured meshes on the performance of finite volume GPU solvers}. 12th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2012), La Manga (España), Julio 2012.
- Fernández.Nieto, E.D., Bouchut, F., Bresh, D., Castro, M.J. and, Mangeney, A. (2008). A new Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comp. Phys., 227: 7720-7754.
- Fernández-Nieto, E.D., Castro, M.J., Parés, C. (2011). On an Intermediate Field Capturing Riemann Solver Based on a Parabolic Viscosity Matrix for the Two-Layer Shallow Water System. J. Sci. Comp. 48:117-140.
- González-Vida, J. M., Macías, J., Castro, M. J., Sánchez-Linares, C., de la Asunción, M., Ortega-Acosta, S., and Arcas, D. (2019). The Lituya Bay landslide-generated mega-tsunami. Numerical simulation and sensitivity analysis, Nat. Hazards Earth Syst. Sci., 19, 369-388, [doi: 10.5194/nhess-19-369-2019].
- Iglesias, O., Lastras, G., Macías, J., González-Vida, J.M., Casamor, J.L., Costa, S., and Canals, M. (2019). Analysis of the tsunamigenic potential of four submarine landslides located on the Ibiza Channel, Western Mediterranean Sea. In progress.
- Jiang, L. and Leblond, P.H. (1992). The coupling of a submarine slide and the surface wave which it generates. J. Geophys. Res., 97(C8):12731-12744.
- Macías, J., Vázquez, J.T., Fernández-Salas, L.M., González-Vida, J.M., Bárcenas, P., Castro, M.J., Díaz-del-Río, and V., Alonso, B. (2015). The Al-Boraní submarine landslide and associated tsunami. A modelling approach. Marine Geology, 361:79-95. [doi:10.1016/j.margeo.2014.12.006].
- Roeber, V., Cheung, K.F., and Kobayashi. M.H. (2010). Shock-capturing Boussinesq-type model for nearshore wave processes. Coastal Engineering, 57:407-423.
- Sánchez-Linares, C. (2011). Simulación numérica de tsunamis generados por avalanchas submarinas: aplicación al caso de Lituya-Bay. Master report, 87 pages. http://hdl.handle.net/10630/7702
- Savage, S.B. and Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177-215.