References (Tsunami-HySEA)

HySEA References

1.   Castro, M.J., Ferreiro, A., García, J.A., González, J.M., Macías, J., Parés, C. and Vázquez, M.E. (2005). On the numerical treatment of wet/dry fronts in shallow flows: Applications to one-layer and two-layer systemsMath. Comp. Model. 42 (3-4): 419-439.

2.   Castro, M.J., González, J.M. and Parés, C. (2006). Numerical treatment of wet/dry fronts in shallow flows with a modified Roe schemeMath. Mod. Meth. App. Sci., 16(6):897-931.

3.   Gallardo, J.M., Parés, C. and Castro, M.J. (2007). On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areasJ. Comp. Phys., 227:574-601.

4.   Fernández, E.D., Bouchut, F., Bresh, D., Castro, M.J. and Mangeney, A. (2008). A new Savage-Hutter type model for submarine avalanches and generated tsunamiJ. Comp. Phys., 227: 7720-7754.

5.   Castro, M.J., Chacón, T., Fernández-Nieto, E..D., González-Vida, J.M., and Parés, C. (2008). Well-balanced finite volume schemes for 2D non-homogeneous hyperbolic systems. Applications to the dam break of Aznalcóllar. Comp. Meth. Appl. Mech. Eng., 197(45):3932-3950.

6.    Castro, M.J., de la Asunción, M., Macías, J., Parés, C., Fernández-Nieto, E.D., González-Vida, J.M., and Morales, T. (2012). IFCP Riemann solver: Application to tsunami modelling using GPUs. In E. Vázquez, A. Hidalgo, P. García,  L. Cea eds. CRC Press. Chapter 5, 237-244.

7.   de la Asunción, M., Castro, M.J., Fernández-Nieto, E.D., Mantas, J.M., Ortega, S. and González-Vida, J.M. (2013). Efficient GPU implementation of a two waves TVD-WAF method for the two-dimensional one layer shallow water system on structured meshes. Computers & Fluids, 80:441-452.

8.   González-Vida, J.M., de la Asunción, M., Castro, M.J., Macías, J., Ortega, S., Sánchez-Linares, C., Arcas, D., and Titov, V. (2013). HySEA-Landslide GPU-based model: Validation to the 1958 Lituya Bay mega-tsunami. International Tsunami Symposium (ITS2013). Göcek (Turkey) 25-28 September 2013.

9.   Macías, J., Castro, M.J., González-Vida, J.M., Ortega, S., and de la Asunción, M. (2013). HySEA tsunami GPU-based model. Application to FTRT simulations. International Tsunami Symposium (ITS2013). Göcek (Turkey). 25-28 September  2013.

10.  Macías, J., Vázquez, J.T., Fernández-Salas, L.M., González-Vida, J.M., Bárcenas, P., Castro, M.J., Díaz-del-Río, and V., Alonso, B. (2015). The Al-Boraní submarine landslide and associated tsunami. A modelling approach. Marine Geology, 361:79-95. [doi:10.1016/j.margeo.2014.12.006].

11.  Millán, A. (2014). Estudio y validación de un modelo de volúmenes finitos TVD-WAF 2D de aguas someras para la simulación de tsunamis. Universidad de Málaga. 101 pp.

12. Macías, J., Castro, M.J., Ortega, S., Escalante, C. and González-Vida, J.M. (2016). NTHMP Benchmarking of Tsunami-HySEA model for propagation and inundation. The 2011 NTHMP Model Benchmarking Workshop. [DOI: 10.13140/RG.2.2.35077.76001]

13.  Macías, J., Castro, M.J., González-Vida, and J.M., Ortega, S. (2013). Non-linear Shallow Water Models for coastal run-up simulations. EGU 2013.

14.  Macías, J., Mercado, A., González-Vida, J.M., Ortega, S. and Castro, M.J. (2016). Comparison and numerical performance of Tsunami-HySEA and MOST models for LANTEX 2013 scenario. Impact assessment on Puerto Rico coasts. Pure and Applied Geophysics, 173(12), 3973–3997. [doi:10.1007/s00024-016-1387-8].

15.  Macías, J., Castro, M.J., Ortega, S., Escalante, C. and González-Vida, J.M. (2016). Tsunami currents benchmarking results for Tsunami-HySEA. In NTHMP report for the MMS Benchmarking Workshop: Tsunami Currents. [DOI: 10.13140/RG.2.2.22999.47527].

16.   Macías, J., Castro, M.J., González-Vida, J.M., de la Asunción, M., and Ortega, S. (2014). HySEA: An operational GPU-based model for Tsunami Early Warning Systems. EGU 2014.

17.  Castro, M.J., González-Vida, J.M., Macías, J., de la Asunción, M., Molinari, I., Melini, D., Romano, F., Tonini, R., Lorito, S. and Piatanesi, A. (2014). HySEA-tsunami model: A GPU implementation for the Italian TEWS. In Proceedings of Perspectives of GPU Computing in Physics and Astrophysics. Rome (Italy), 15-17 September 2014.

18.  Castro, M.J., González-Vida, J.M., and Macías, J. (2014). Numerical schemes for SW equations aimed for tsunami simulations in the perspective of TEWS. Poster presented at TsuMaMoS 2014 conference. April 2014, Málaga, Spain.

19. González-Vida, J.M., Macías, J., Ortega, S., and Castro, M.J. (2016). Modelling propagation and inundation of the March 2011 Tohoku tsunami with the tsunami-HySEA model. In progress.

20.  Macías, J. (2014). Tsunami Numerical Simulations: HySEA model. A GPU approach to tsunami modeling and case studies. Experts Meeting Workshop on Tsunami Modeling and Mitigation. Cartagena de Indias (Colombia), 1-3 December, 2014.

21. Gallardo, J.M., Ortega, S., de la Asunción, M., and Mantas, J.M. (2011). Two-dimensional compact third-order polynomial reconstructions. Solving non-conservative hyperbolic systems using GPUs. J. Sci. Comput., 48:141-163.

22.  Castro, M.J. and Fernández-Nieto,  E. D. (2012). A class of computationally fast first order finite volume solvers: PVM methods. SIAM J. Sci. Comput., 34:A2173-2196.

23. Castro M.J., Fernández-Nieto E.D, Ferreiro A.M., García-Rodríguez J.A., and Parés, C. (2009). High order extensions of Roe schemes for two-dimensional non-conservative hyperbolic systems. J. Sci. Comput., 39(1):67-114.

24. de la Asunción, M., Mantas, and J.M, and Castro, M.J. (2011). Simulation of one-layer shallow water systems on multicore and CUDA architectures. J. Supercomput., 58:206-214.

25. Castro, M.J., Ortega, S., Asunción, M., Mantas, J.M., and Gallardo, J.M. (2011). GPU computing for shallow water flow simulation based on finite volume schemes. Comptes Rendus Mécanique, 339:165-184.

 

Other References

26. Bristeau, M.O., Mangeney, A., Sainte-Marie, J., and Seguin, N. (2015). An energy-consistent depth-averaged Euler system: Derivation and properties. Discrete and continuous dynamical system. Series B, 20(4):961-988.

27.  Fritz, H.M., Hager, and W.H., Minor, H.-E. (2001). Lituya Bay case: Rockslide impact and wave run-up. Science of Tsunami Hazards, 19(1):3-22.

28.  Gottlieb, S. and Shu, C.W. (1998). Total variation diminishing Runge-Kutta schemes. Math. Comp., 67: 73-85.

29.  Heller, V. and Hager, W.H. (2011). Waves types of landslide generated impulse waves. Ocean Eng., 38(4):630-640.

30.  Kato, H. and Tsuji, Y. (1994). Estimation of fault parameters of the 1993 Hokkaido-Nansei-Oki earthquake and tsunami characteristics. Bull. Earthq. Res. Inst., Univ. Tokyo, 69:39-66.

31. Liu, P. L.-F., Yeh, H., and Synolakis, C., 2008. Advanced Numerical Models for Simulating Tsunami Waves and Runup. Vol. 10 of Advances in Coastal and Ocean Engineering. World Scientific, Proceedings of the Third International Workshop on Long-Wave Runup Models, Catalina, 2004 Benchmark problems, pp. 223-230.

32.  NTHMP (National Tsunami Hazard Mitigation Program), 2012. Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop. Boulder: U.S. Department of Commerce/NOAA/NTHMP; (NOAA Special Report). 436 p.

33. NTHMP (National Tsunami Hazard Mitigation Program), 2016. Report on the 2015 NTHMP Current Modeling Workshop. Portland, Oregon. 200 p.

34.  Marquina A. (1994). Local piecewise hyperbolic reconstructions for nonlinear scalar conservation laws, SIAM J. Sci. Comput., 15:892-915.

35.  Parés, C. (2006). Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Num. Anal., 44(1): 300−321.

36.  Roeber, V., Cheung, K.F., and Kobayashi. M.H. (2010). Shock-capturing Boussinesq-type model for nearshore wave processes. Coastal Engineering, 57:407-423.

37.  Synolakis, C.E.BernardE.N., TitovV.V., Kânoğlu, U. and González, F. I. (2008)Validation and verification of tsunami numerical modelsPure Appl. Geophys.165(11–12):21972228.

38.  Takahashi, T., 1996. Benchmark Problem 4. The 1993 Okushiri tsunami. Data, Conditions and Phenomena. In: H. Yeh, P. Liu, and C. Synolakis (eds.): Long wave runup models. Singapore: World Scientific Publishing Co. Pte. Ltd., pp. 384-403.

39.  van Leer, B. (1979). Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method. Com. Phys., 32:101-136.

40.  Yamazaki, Y., Kowalik, Z., and Cheung, K.F. (2009). Depth-integrated, non-hydrostatic model for wave breaking and run-up. Int. J. for Numer. Meth. in Fluids, 61(5):473-497.

41.  Yeh, H., Liu, P., and Synolakis, C., editors (1996). Benchmark problem 4. The 1993 Okushiri Data, Conditions and Phenomena. Singapore: World Scientific Publishing Co. Pte. Ltd.

 


 Software details

 Tsunami HySEA