References (Landslide-HySEA)

  1. Castro, M. J., Fernández-Nieto, E. D., González-Vida, J. M., Parés, C. (2011a). Numerical Treatment of the Loss of Hyperbolicity of the Two-Layer Shallow-Water System. Journal of Scientific Computing, 48(1):16-40.
  2. Castro, M.J., Ortega, S., de la Asunción, M., Mantas, J.M., Gallardo, J.M. (2011b). GPU computing for shallow water flows simulation based on finite volume schemes. C.R. Mecanique , 339(2-3):165-184.
  3.  Cordier, S., Le, M. and Morales de Luna, T. (2011). Bedload transport in shallow water models: Why splitting (may) fail, how hyperbolicity (can) help. Advances in Water Resources, 8(34):980-989.
  4. de la Asunción, M., Castro, M.J., González-Vida, J.M., Macías, J., Ortega-Acosta, and S., Sánchez-Linares, C. (2013). East Coast Non-Seismic Tsunamis: A first landslide approach. The memorandum can be downloaded here.
  5.  de la Asunción, M., Mantas and J.M., Castro, M.J. (2012). Evaluating the impact of cell renumbering of unstructured meshes on the performance of finite volume GPU solvers}. 12th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2012), La Manga (España), Julio 2012.
  6.  Fernández.Nieto, E.D., Bouchut, F., Bresh, D., Castro, M.J. and, Mangeney, A. (2008). A new Savage-Hutter type model for submarine avalanches and generated tsunamiJ. Comp. Phys., 227: 7720-7754.
  7. Fernández-Nieto, E.D., Castro, M.J., Parés, C. (2011). On an Intermediate Field Capturing Riemann Solver Based on a Parabolic Viscosity Matrix for the Two-Layer Shallow Water System. J. Sci. Comp. 48:117-140.
  8. González-Vida, J. M., Macías, J., Castro, M. J., Sánchez-Linares, C., de la Asunción, M., Ortega-Acosta, S., and Arcas, D. (2019). The Lituya Bay landslide-generated mega-tsunami. Numerical simulation and sensitivity analysis, Nat. Hazards Earth Syst. Sci., 19, 369-388, [doi: 10.5194/nhess-19-369-2019].
  9. Iglesias, O., Lastras, G., Macías, J., González-Vida, J.M., Casamor, J.L., Costa, S., and Canals, M. (2019). Analysis of the tsunamigenic potential of four submarine landslides located on the Ibiza Channel, Western Mediterranean Sea. In progress.
  10. Jiang, L. and Leblond, P.H. (1992). The coupling of a submarine slide and the surface wave which it generates. J. Geophys. Res., 97(C8):12731-12744.
  11. Macías, J., Vázquez, J.T., Fernández-Salas, L.M., González-Vida, J.M., Bárcenas, P., Castro, M.J., Díaz-del-Río, and V., Alonso, B. (2015). The Al-Boraní submarine landslide and associated tsunami. A modelling approach. Marine Geology, 361:79-95. [doi:10.1016/j.margeo.2014.12.006].
  12. Roeber, V., Cheung, K.F., and Kobayashi. M.H. (2010). Shock-capturing Boussinesq-type model for nearshore wave processes. Coastal Engineering, 57:407-423.
  13. Sánchez-Linares, C. (2011). Simulación numérica de tsunamis generados por avalanchas submarinas: aplicación al caso de Lituya-Bay. Master report, 87 pages. http://hdl.handle.net/10630/7702
  14. Savage, S.B. and Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177-215.

  Software Details

  Landslide HySEA